A monotonic property for the zeros of ultraspherical polynomials

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bounds for Extreme Zeros of Quasi–orthogonal Ultraspherical Polynomials

We discuss and compare upper and lower bounds obtained by two different methods for the positive zero of the ultraspherical polynomial C n that is greater than 1 when −3/2 < λ <−1/2. Our first approach uses mixed three term recurrence relations and interlacing of zeros while the second approach uses a method going back to Euler and Rayleigh and already applied to Bessel functions and Laguerre a...

متن کامل

On a Separation Theorem for the Zeros of the Ultraspherical Polynomials

1. It will be recalled that the ultraspherical polynomials are those which are orthogonal on the interval ( — 1, 1), corresponding to the weight function (1— x2)x~1/2, X>—1/2. In what follows X = 0 will also be excluded. The coefficients of these polynomials are functions of the parameter X appearing in the weight function, and the symbol P„(x, X), indicative of this fact, will be used to denot...

متن کامل

Some compact generalization of inequalities for polynomials with prescribed zeros

‎Let $p(z)=z^s h(z)$ where $h(z)$ is a polynomial‎ ‎of degree at most $n-s$ having all its zeros in $|z|geq k$ or in $|z|leq k$‎. ‎In this paper we obtain some new results about the dependence of $|p(Rz)|$ on $|p(rz)| $ for $r^2leq rRleq k^2$‎, ‎$k^2 leq rRleq R^2$ and for $Rleq r leq k$‎. ‎Our results refine and generalize certain well-known polynomial inequalities‎.

متن کامل

A new characterization of ultraspherical polynomials

We characterize the class of ultraspherical polynomials in between all symmetric orthogonal polynomials on [−1, 1] via the special form of the representation of the derivatives pn+1(x) by pk(x), k = 0, ..., n.

متن کامل

Ultraspherical Type Generating Functions for Orthogonal Polynomials

We characterize the probability distributions of finite all order moments having generating functions for orthogonal polynomials of ultraspherical type. 1. Motivation: Meixner families There is a one to one correspondance between probability distributions on the real line and polynomials of a one variable satisfying a three-terms recurrence relation subject to some positive conditions ([9]). Th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Proceedings of the American Mathematical Society

سال: 1981

ISSN: 0002-9939

DOI: 10.1090/s0002-9939-1981-0630050-x